In-situ Liquid Phase Epitaxy: Another Strategy to Synthesize Heterostructured Core-shell Composites.

نویسندگان

  • Zhongsheng Wen
  • Guanqin Wang
چکیده

Core-shell Nb2O5/TiO2 composite with hierarchical heterostructure is successfully synthesized In-situ by a facile template-free and acid-free solvothermal method based on the mechanism of liquid phase epitaxy. The chemical circumstance change induced by the alcoholysis of NbCl5 is utilized tactically to trigger core-shell assembling In-situ. The tentative mechanism for the self-assembling of core-shell structure and hierarchical structure is explored. The microstructure and morphology changes during synthesis process are investigated systematically by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The dramatic alcoholysis of NbCl5 has been demonstrated to be the fundamental factor for the formation of the spherical core, which changes the acid circumstance of the solution and induces the co-precipitation of TiO2. The homogeneous co-existence of Nb2O5/TiO2 in the core and the co-existence of Nb/Ti ions in the reaction solution facilitate the In-situ nucleation and epitaxial growth of the crystalline shell with the same composition as the core. In-situ liquid phase epitaxy can offer a different strategy for the core-shell assembling for oxide materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of GaAs/GaSb Core-Shell Heterostructured Nanowires Grown by Molecular-Beam Epitaxy

In this paper, we demonstrated the growth of GaAs/GaSb core-shell heterostructured nanowires on GaAs substrates, with the assistance of Au catalysts by molecular-beam epitaxy. Time-evolution experiments were designed to study the formation of GaSb shells with different growth times. It was found that, by comparing the morphology of nanowires for various growth times, lateral growth was taking a...

متن کامل

Synthesize and Characterization of Hollow and Core/Shell Based on CeO2 as a Alcohol Sensor

In this study, CeO2 hollow spherical nanoparticles, CeO2/SiO2 @ CeO2 core/shell composites,and hollow CeO2/SiO2 sensors were synthesized and their microstructures were researched byFT-IR, XRD, FESEM, EDX and BET analyses. The peaks observed in the FT-IR spectra of the synthesizedsamples corresponded to Ce-O stretching vibration (ca. 566 cm-1) and O-Si-O bendingvibration (ca. 470 cm-1). XRD diff...

متن کامل

In(x)Ga(1-x)As nanowire growth on graphene: van der Waals epitaxy induced phase segregation.

The growth of high-density arrays of vertically oriented, single crystalline InAs NWs on graphene surfaces are realized through the van der Waals (vdW) epitaxy mechanism by metalorganic chemical vapor deposition (MOCVD). However, the growth of InGaAs NWs on graphene results in spontaneous phase separation starting from the beginning of growth, yielding a well-defined InAs-In(x)Ga(1-x)As (0.2 < ...

متن کامل

Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells.

This work reports a hard self-template method to synthesize core/shell like Fe3O4@C microparticles, in which the Pd nanocrystals can be alternatively incorporated into the carbon shells. The Fe3O4@polyaniline core/shell microspheres were first synthesized as the precursor by in situ polymerization of aniline onto the surface of the Fe3O4 microspheres. In a subsequent carbonization of the precur...

متن کامل

Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF₄:Yb3+/Ln3+@CaF₂ (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016